Combining Machine Learning and Human Experts to Predict Match Outcomes in Football: A Baseline Model

8 Dec 2020  ·  Ryan Beal, Stuart E. Middleton, Timothy J. Norman, Sarvapali D. Ramchurn ·

In this paper, we present a new application-focused benchmark dataset and results from a set of baseline Natural Language Processing and Machine Learning models for prediction of match outcomes for games of football (soccer). By doing so we give a baseline for the prediction accuracy that can be achieved exploiting both statistical match data and contextual articles from human sports journalists. Our dataset is focuses on a representative time-period over 6 seasons of the English Premier League, and includes newspaper match previews from The Guardian. The models presented in this paper achieve an accuracy of 63.18% showing a 6.9% boost on the traditional statistical methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here