Combining predictions from linear models when training and test inputs differ

24 Jun 2014 Thijs van Ommen

Methods for combining predictions from different models in a supervised learning setting must somehow estimate/predict the quality of a model's predictions at unknown future inputs. Many of these methods (often implicitly) make the assumption that the test inputs are identical to the training inputs, which is seldom reasonable... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet