Competing Ratio Loss for Discriminative Multi-class Image Classification

25 Dec 2019  ·  Ke Zhang, Yurong Guo, Xinsheng Wang, Dongliang Chang, Zhenbing Zhao, Zhanyu Ma, Tony X. Han ·

The development of deep convolutional neural network architecture is critical to the improvement of image classification task performance. Many image classification studies use deep convolutional neural network and focus on modifying the network structure to improve image classification performance. Conversely, our study focuses on loss function design. Cross-entropy Loss (CEL) has been widely used for training deep convolutional neural network for the task of multi-class classification. Although CEL has been successfully implemented in several image classification tasks, it only focuses on the posterior probability of the correct class. For this reason, a negative log likelihood ratio loss (NLLR) was proposed to better differentiate between the correct class and the competing incorrect ones. However, during the training of the deep convolutional neural network, the value of NLLR is not always positive or negative, which severely affects the convergence of NLLR. Our proposed competing ratio loss (CRL) calculates the posterior probability ratio between the correct class and the competing incorrect classes to further enlarge the probability difference between the correct and incorrect classes. We added hyperparameters to CRL, thereby ensuring its value to be positive and that the update size of backpropagation is suitable for the CRL's fast convergence. To demonstrate the performance of CRL, we conducted experiments on general image classification tasks (CIFAR10/100, SVHN, ImageNet), the fine-grained image classification tasks (CUB200-2011 and Stanford Car), and the challenging face age estimation task (using Adience). Experimental results show the effectiveness and robustness of the proposed loss function on different deep convolutional neural network architectures and different image classification tasks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here