Compositional Obverter Communication Learning From Raw Visual Input

ICLR 2018 Edward ChoiAngeliki LazaridouNando de Freitas

One of the distinguishing aspects of human language is its compositionality, which allows us to describe complex environments with limited vocabulary. Previously, it has been shown that neural network agents can learn to communicate in a highly structured, possibly compositional language based on disentangled input (e.g. hand- engineered features)... (read more)

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet