Compound Density Networks

ICLR 2019  ·  Agustinus Kristiadi, Asja Fischer ·

Despite the huge success of deep neural networks (NNs), finding good mechanisms for quantifying their prediction uncertainty is still an open problem. It was recently shown, that using an ensemble of NNs trained with a proper scoring rule leads to results competitive to those of Bayesian NNs. This ensemble method can be understood as finite mixture model with uniform mixing weights. We build on this mixture model approach and increase its flexibility by replacing the fixed mixing weights by an adaptive, input-dependent distribution (specifying the probability of each component) represented by an NN, and by considering uncountably many mixture components. The resulting model can be seen as the continuous counterpart to mixture density networks and is therefore referred to as compound density network. We empirically show that the proposed model results in better uncertainty estimates and is more robust to adversarial examples than previous approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here