Computing Cliques and Cavities in Networks

3 Jan 2021  ·  Dinghua Shi, Zhifeng Chen, Xiang Sun, Qinghua Chen, Chuang Ma, Yang Lou, Guanrong Chen ·

Complex networks contain complete subgraphs such as nodes, edges, triangles, etc., referred to as simplices and cliques of different orders. Notably, cavities consisting of higher-order cliques play an important role in brain functions. Since searching for maximum cliques is an NP-complete problem, we use k-core decomposition to determine the computability of a given network. For a computable network, we design a search method with an implementable algorithm for finding cliques of different orders, obtaining also the Euler characteristic number. Then, we compute the Betti numbers by using the ranks of boundary matrices of adjacent cliques. Furthermore, we design an optimized algorithm for finding cavities of different orders. Finally, we apply the algorithm to the neuronal network of C. elegans with data from one typical dataset, and find all of its cliques and some cavities of different orders, providing a basis for further mathematical analysis and computation of its structure and function.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here