ConceptVision: A Flexible Scene Classification Framework

3 Jan 2014  ·  Ahmet Iscen, Eren Golge, Ilker Sarac, Pinar Duygulu ·

We introduce ConceptVision, a method that aims for high accuracy in categorizing large number of scenes, while keeping the model relatively simpler and efficient for scalability. The proposed method combines the advantages of both low-level representations and high-level semantic categories, and eliminates the distinctions between different levels through the definition of concepts... The proposed framework encodes the perspectives brought through different concepts by considering them in concept groups. Different perspectives are ensembled for the final decision. Extensive experiments are carried out on benchmark datasets to test the effects of different concepts, and methods used to ensemble. Comparisons with state-of-the-art studies show that we can achieve better results with incorporation of concepts in different levels with different perspectives. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here