Condition Number Analysis of Kernel-based Density Ratio Estimation

15 Dec 2009  ·  Takafumi Kanamori, Taiji Suzuki, Masashi Sugiyama ·

The ratio of two probability densities can be used for solving various machine learning tasks such as covariate shift adaptation (importance sampling), outlier detection (likelihood-ratio test), and feature selection (mutual information). Recently, several methods of directly estimating the density ratio have been developed, e.g., kernel mean matching, maximum likelihood density ratio estimation, and least-squares density ratio fitting. In this paper, we consider a kernelized variant of the least-squares method and investigate its theoretical properties from the viewpoint of the condition number using smoothed analysis techniques--the condition number of the Hessian matrix determines the convergence rate of optimization and the numerical stability. We show that the kernel least-squares method has a smaller condition number than a version of kernel mean matching and other M-estimators, implying that the kernel least-squares method has preferable numerical properties. We further give an alternative formulation of the kernel least-squares estimator which is shown to possess an even smaller condition number. We show that numerical studies meet our theoretical analysis.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here