Conditional Generative Moment-Matching Networks

NeurIPS 2016  ·  Yong Ren, Jialian Li, Yucen Luo, Jun Zhu ·

Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment- matching networks (CGMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learning is performed by stochastic gradient descent with the gradient calculated by back-propagation. We evaluate CGMMN on a wide range of tasks, including predictive modeling, contextual generation, and Bayesian dark knowledge, which distills knowledge from a Bayesian model by learning a relatively small CGMMN student network. Our results demonstrate competitive performance in all the tasks.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here