Conditional Loss and Deep Euler Scheme for Time Series Generation

10 Feb 2021  ·  Carl Remlinger, Joseph Mikael, Romuald Elie ·

We introduce three new generative models for time series that are based on Euler discretization of Stochastic Differential Equations (SDEs) and Wasserstein metrics. Two of these methods rely on the adaptation of generative adversarial networks (GANs) to time series. The third algorithm, called Conditional Euler Generator (CEGEN), minimizes a dedicated distance between the transition probability distributions over all time steps. In the context of Ito processes, we provide theoretical guarantees that minimizing this criterion implies accurate estimations of the drift and volatility parameters. We demonstrate empirically that CEGEN outperforms state-of-the-art and GAN generators on both marginal and temporal dynamics metrics. Besides, it identifies accurate correlation structures in high dimension. When few data points are available, we verify the effectiveness of CEGEN, when combined with transfer learning methods on Monte Carlo simulations. Finally, we illustrate the robustness of our method on various real-world datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here