CoNES: Convex Natural Evolutionary Strategies

16 Jul 2020  ·  Sushant Veer, Anirudha Majumdar ·

We present a novel algorithm -- convex natural evolutionary strategies (CoNES) -- for optimizing high-dimensional blackbox functions by leveraging tools from convex optimization and information geometry. CoNES is formulated as an efficiently-solvable convex program that adapts the evolutionary strategies (ES) gradient estimate to promote rapid convergence... The resulting algorithm is invariant to the parameterization of the belief distribution. Our numerical results demonstrate that CoNES vastly outperforms conventional blackbox optimization methods on a suite of functions used for benchmarking blackbox optimizers. Furthermore, CoNES demonstrates the ability to converge faster than conventional blackbox methods on a selection of OpenAI's MuJoCo reinforcement learning tasks for locomotion. read more

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here