Confidence-Aware Safe and Stable Control of Control-Affine Systems

14 Mar 2024  ·  Shiqing Wei, Prashanth Krishnamurthy, Farshad Khorrami ·

Designing control inputs that satisfy safety requirements is crucial in safety-critical nonlinear control, and this task becomes particularly challenging when full-state measurements are unavailable. In this work, we address the problem of synthesizing safe and stable control for control-affine systems via output feedback (using an observer) while reducing the estimation error of the observer. To achieve this, we adapt control Lyapunov function (CLF) and control barrier function (CBF) techniques to the output feedback setting. Building upon the existing CLF-CBF-QP (Quadratic Program) and CBF-QP frameworks, we formulate two confidence-aware optimization problems and establish the Lipschitz continuity of the obtained solutions. To validate our approach, we conduct simulation studies on two illustrative examples. The simulation studies indicate both improvements in the observer's estimation accuracy and the fulfillment of safety and control requirements.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here