Conflict-Free Four-Dimensional Path Planning for Urban Air Mobility Considering Airspace Occupations

27 Jul 2021  ·  Wei Dai, Bizhao Pang, Kin Huat Low ·

Urban air mobility (UAM) has attracted the attention of aircraft manufacturers, air navigation service providers and governments in recent years. Preventing the conflict among urban aircraft is crucial to UAM traffic safety, which is a key in enabling large scale UAM operation. Pre-flight conflict-free path planning can provide a strategic layer in the maintenance of safety performance, thus becomes an important element in UAM. This paper aims at tackling conflict-free path planning problem for UAM operation with a consideration of four-dimensional airspace management. In the first place, we introduced and extended a four-dimensional airspace management concept, AirMatrix. On the basis of AirMatrix, we formulated the shortest flight time path planning problem considering resolution of conflicts with both static and dynamic obstacles. A Conflict-Free A-Star algorithm was developed for planning four-dimensional paths based on first-come-first-served scheme. The algorithm contains a novel design of heuristic function as well as a conflict detection and resolution strategy. Numerical experiment was carried out in Jurong East area in Singapore, and the results show that the algorithm can generate paths resolving a significant number of potential conflicts in airspace utilization, with acceptable computational time and flight delay. The contributions of this study provide references for stakeholders to support the development of UAM.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here