Connecting the dots in ethology: applying network theory to understand neural and animal collectives

4 Dec 2021  ·  Adam Gosztolai, Pavan Ramdya ·

A major goal shared by neuroscience and collective behavior is to understand how dynamic interactions between individual elements give rise to behaviors in populations of neurons and animals, respectively. This goal has recently become within reach thanks to techniques providing access to the connectivity and activity of neuronal ensembles as well as to behaviors among animal collectives. The next challenge using these datasets is to unravel network mechanisms generating population behaviors. This is aided by network theory, a field that studies structure-function relationships in interconnected systems. Here we review studies that have taken a network view on modern datasets to provide unique insights into individual and collective animal behaviors. Specifically, we focus on how analyzing signal propagation, controllability, symmetry, and geometry of networks can tame the complexity of collective system dynamics. These studies illustrate the potential of network theory to accelerate our understanding of behavior across ethological scales.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here