Consistency Training with Virtual Adversarial Discrete Perturbation

NAACL 2022  ·  Jungsoo Park, Gyuwan Kim, Jaewoo Kang ·

Consistency training regularizes a model by enforcing predictions of original and perturbed inputs to be similar. Previous studies have proposed various augmentation methods for the perturbation but are limited in that they are agnostic to the training model. Thus, the perturbed samples may not aid in regularization due to their ease of classification from the model. In this context, we propose an augmentation method of adding a discrete noise that would incur the highest divergence between predictions. This virtual adversarial discrete noise obtained by replacing a small portion of tokens while keeping original semantics as much as possible efficiently pushes a training model's decision boundary. Experimental results show that our proposed method outperforms other consistency training baselines with text editing, paraphrasing, or a continuous noise on semi-supervised text classification tasks and a robustness benchmark

PDF Abstract NAACL 2022 PDF NAACL 2022 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here