Consistent Non-Parametric Methods for Maximizing Robustness

Learning classifiers that are robust to adversarial examples has received a great deal of recent attention. A major drawback of the standard robust learning framework is there is an artificial robustness radius $r$ that applies to all inputs. This ignores the fact that data may be highly heterogeneous, in which case it is plausible that robustness regions should be larger in some regions of data, and smaller in others. In this paper, we address this limitation by proposing a new limit classifier, called the neighborhood optimal classifier, that extends the Bayes optimal classifier outside its support by using the label of the closest in-support point. We then argue that this classifier maximizes the size of its robustness regions subject to the constraint of having accuracy equal to the Bayes optimal. We then present sufficient conditions under which general non-parametric methods that can be represented as weight functions converge towards this limit, and show that both nearest neighbors and kernel classifiers satisfy them under certain conditions.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here