Constituency Parsing of Bulgarian: Word- vs Class-based Parsing
In this paper, we report the obtained results of two constituency parsers trained with BulTreeBank, an HPSG-based treebank for Bulgarian. To reduce the data sparsity problem, we propose using the Brown word clustering to do an off-line clustering and map the words in the treebank to create a class-based treebank. The observations show that when the classes outnumber the POS tags, the results are better. Since this approach adds on another dimension of abstraction (in comparison to the lemma), its coarse-grained representation can be used further for training statistical parsers.
PDF Abstract