Constrained Attack-Resilient Estimation of Stochastic Cyber-Physical Systems

25 Sep 2021  ·  Wenbin Wan, Hunmin Kim, Naira Hovakimyan, Petros Voulgaris ·

In this paper, a constrained attack-resilient estimation algorithm (CARE) is developed for stochastic cyber-physical systems. The proposed CARE can simultaneously estimate the compromised system states and attack signals. It has improved estimation accuracy and attack detection performance when physical constraints and operational limitations are available. In particular, CARE is designed for simultaneous input and state estimation that provides minimum-variance unbiased estimates, and these estimates are projected onto the constrained space restricted by inequality constraints subsequently. We prove that the estimation errors and their covariances from CARE are less than those from unconstrained algorithms and confirm that this property can further reduce the false negative rate in attack detection. We show that estimation errors of CARE are practically exponentially stable in mean square. Finally, an illustrative example of attacks on a vehicle is given to demonstrate the improved estimation accuracy and detection performance compared to an existing unconstrained algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here