Constrained Langevin Algorithms with L-mixing External Random Variables

27 May 2022  ·  Yuping Zheng, Andrew Lamperski ·

Langevin algorithms are gradient descent methods augmented with additive noise, and are widely used in Markov Chain Monte Carlo (MCMC) sampling, optimization, and machine learning. In recent years, the non-asymptotic analysis of Langevin algorithms for non-convex learning has been extensively explored. For constrained problems with non-convex losses over a compact convex domain with IID data variables, the projected Langevin algorithm achieves a deviation of $O(T^{-1/4} (\log T)^{1/2})$ from its target distribution [27] in $1$-Wasserstein distance. In this paper, we obtain a deviation of $O(T^{-1/2} \log T)$ in $1$-Wasserstein distance for non-convex losses with $L$-mixing data variables and polyhedral constraints (which are not necessarily bounded). This improves on the previous bound for constrained problems and matches the best-known bound for unconstrained problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here