Constraint-Aware Deep Neural Network Compression

Deep neural network compression has the potential to bring modern resource-hungry deep networks to resource-limited devices. However, in many of the most compelling deployment scenarios of compressed deep networks, the operational constraints matter: for example, a pedestrian detection network on a self-driving car may have to satisfy a latency constraint for safe operation. We propose the first principled treatment of deep network compression under operational constraints. We formulate the compression learning problem from the perspective of constrained Bayesian optimization, and introduce a cooling (annealing) strategy to guide the network compression towards the target constraints. Experiments on ImageNet demonstrate the value of modelling constraints directly in network compression.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here