Content-Based Top-N Recommendation using Heterogeneous Relations

27 Jun 2016  ·  Yifan Chen, Xiang Zhao, Junjiao Gan, Junkai Ren, Yang Fang ·

Top-$N$ recommender systems have been extensively studied. However, the sparsity of user-item activities has not been well resolved. While many hybrid systems were proposed to address the cold-start problem, the profile information has not been sufficiently leveraged. Furthermore, the heterogeneity of profiles between users and items intensifies the challenge. In this paper, we propose a content-based top-$N$ recommender system by learning the global term weights in profiles. To achieve this, we bring in PathSim, which could well measures the node similarity with heterogeneous relations (between users and items). Starting from the original TF-IDF value, the global term weights gradually converge, and eventually reflect both profile and activity information. To facilitate training, the derivative is reformulated into matrix form, which could easily be paralleled. We conduct extensive experiments, which demonstrate the superiority of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here