Context Attentive Document Ranking and Query Suggestion

5 Jun 2019  ·  Wasi Uddin Ahmad, Kai-Wei Chang, Hongning Wang ·

We present a context-aware neural ranking model to exploit users' on-task search activities and enhance retrieval performance. In particular, a two-level hierarchical recurrent neural network is introduced to learn search context representation of individual queries, search tasks, and corresponding dependency structure by jointly optimizing two companion retrieval tasks: document ranking and query suggestion. To identify the variable dependency structure between search context and users' ongoing search activities, attention at both levels of recurrent states are introduced. Extensive experiment comparisons against a rich set of baseline methods and an in-depth ablation analysis confirm the value of our proposed approach for modeling search context buried in search tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here