Continual Learners are Incremental Model Generalizers

21 Jun 2023  ·  Jaehong Yoon, Sung Ju Hwang, Yue Cao ·

Motivated by the efficiency and rapid convergence of pre-trained models for solving downstream tasks, this paper extensively studies the impact of Continual Learning (CL) models as pre-trainers. In both supervised and unsupervised CL, we find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance. This is because CL models can learn improved task-general features when easily forgetting task-specific knowledge. Based on this observation, we suggest a new unsupervised CL framework with masked modeling, which aims to capture fluent task-generic representation during training. Furthermore, we propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks. The model fine-tuned with GLAD achieves competitive performance and can also be used as a good pre-trained model itself. We believe this paper breaks the barriers between pre-training and fine-tuning steps and leads to a sustainable learning framework in which the continual learner incrementally improves model generalization, yielding better transfer to unseen tasks.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here