Continuous-Time Flows for Efficient Inference and Density Estimation

Two fundamental problems in unsupervised learning are efficient inference for latent-variable models and robust density estimation based on large amounts of unlabeled data. Algorithms for the two tasks, such as normalizing flows and generative adversarial networks (GANs), are often developed independently... (read more)

PDF Abstract ICML 2018 PDF ICML 2018 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Normalizing Flows
Distribution Approximation