Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems

20 May 2020 Chang Zhou Jianxin Ma Jianwei Zhang Jingren Zhou Hongxia Yang

Deep candidate generation (DCG) that narrows down the collection of relevant items from billions to hundreds via representation learning is essential to large-scale recommender systems. Standard approaches approximate maximum likelihood estimation (MLE) through sampling for better scalability and address the problem of DCG in a way similar to language modeling... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet