Control of bilinear systems using gain-scheduling: Stability and performance guarantees

10 Apr 2023  ·  Robin Strässer, Julian Berberich, Frank Allgöwer ·

In this paper, we present a state-feedback controller design method for bilinear systems. To this end, we write the bilinear system as a linear fractional representation by interpreting the state in the bilinearity as a structured uncertainty. Based on that, we derive convex conditions in terms of linear matrix inequalities for the controller design, which are efficiently solvable by semidefinite programming. Further, we prove asymptotic stability and quadratic performance of the resulting closed-loop system locally in a predefined region. The proposed design uses gain-scheduling techniques and results in a state feedback with rational dependence on the state, which can substantially reduce conservatism and improve performance in comparison to a simpler, linear state feedback. Moreover, the design method is easily adaptable to various scenarios due to its modular formulation in the robust control framework. Finally, we apply the developed approaches to numerical examples and illustrate the benefits of the approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here