Controlled Analyses of Social Biases in Wikipedia Bios

31 Dec 2020  ·  Anjalie Field, Chan Young Park, Kevin Z. Lin, Yulia Tsvetkov ·

Social biases on Wikipedia, a widely-read global platform, could greatly influence public opinion. While prior research has examined man/woman gender bias in biography articles, possible influences of other demographic attributes limit conclusions. In this work, we present a methodology for analyzing Wikipedia pages about people that isolates dimensions of interest (e.g., gender), from other attributes (e.g., occupation). Given a target corpus for analysis (e.g.~biographies about women), we present a method for constructing a comparison corpus that matches the target corpus in as many attributes as possible, except the target one. We develop evaluation metrics to measure how well the comparison corpus aligns with the target corpus and then examine how articles about gender and racial minorities (cis. women, non-binary people, transgender women, and transgender men; African American, Asian American, and Hispanic/Latinx American people) differ from other articles. In addition to identifying suspect social biases, our results show that failing to control for covariates can result in different conclusions and veil biases. Our contributions include methodology that facilitates further analyses of bias in Wikipedia articles, findings that can aid Wikipedia editors in reducing biases, and a framework and evaluation metrics to guide future work in this area.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here