Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling

29 Sep 2017  ·  Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, Tie-Yan Liu ·

When using stochastic gradient descent to solve large-scale machine learning problems, a common practice of data processing is to shuffle the training data, partition the data across multiple machines if needed, and then perform several epochs of training on the re-shuffled (either locally or globally) data. The above procedure makes the instances used to compute the gradients no longer independently sampled from the training data set. Then does the distributed SGD method have desirable convergence properties in this practical situation? In this paper, we give answers to this question. First, we give a mathematical formulation for the practical data processing procedure in distributed machine learning, which we call data partition with global/local shuffling. We observe that global shuffling is equivalent to without-replacement sampling if the shuffling operations are independent. We prove that SGD with global shuffling has convergence guarantee in both convex and non-convex cases. An interesting finding is that, the non-convex tasks like deep learning are more suitable to apply shuffling comparing to the convex tasks. Second, we conduct the convergence analysis for SGD with local shuffling. The convergence rate for local shuffling is slower than that for global shuffling, since it will lose some information if there's no communication between partitioned data. Finally, we consider the situation when the permutation after shuffling is not uniformly distributed (insufficient shuffling), and discuss the condition under which this insufficiency will not influence the convergence rate. Our theoretical results provide important insights to large-scale machine learning, especially in the selection of data processing methods in order to achieve faster convergence and good speedup. Our theoretical findings are verified by extensive experiments on logistic regression and deep neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods