Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization

In many modern machine learning applications, structures of underlying mathematical models often yield nonconvex optimization problems. Due to the intractability of nonconvexity, there is a rising need to develop efficient methods for solving general nonconvex problems with certain performance guarantee. In this work, we investigate the accelerated proximal gradient method for nonconvex programming (APGnc). The method compares between a usual proximal gradient step and a linear extrapolation step, and accepts the one that has a lower function value to achieve a monotonic decrease. In specific, under a general nonsmooth and nonconvex setting, we provide a rigorous argument to show that the limit points of the sequence generated by APGnc are critical points of the objective function. Then, by exploiting the Kurdyka-{\L}ojasiewicz (\KL) property for a broad class of functions, we establish the linear and sub-linear convergence rates of the function value sequence generated by APGnc. We further propose a stochastic variance reduced APGnc (SVRG-APGnc), and establish its linear convergence under a special case of the \KL property. We also extend the analysis to the inexact version of these methods and develop an adaptive momentum strategy that improves the numerical performance.

PDF Abstract ICML 2017 PDF ICML 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here