Convergence Rates for Learning Linear Operators from Noisy Data

27 Aug 2021  ·  Maarten V. de Hoop, Nikola B. Kovachki, Nicholas H. Nelsen, Andrew M. Stuart ·

This paper studies the learning of linear operators between infinite-dimensional Hilbert spaces. The training data comprises pairs of random input vectors in a Hilbert space and their noisy images under an unknown self-adjoint linear operator. Assuming that the operator is diagonalizable in a known basis, this work solves the equivalent inverse problem of estimating the operator's eigenvalues given the data. Adopting a Bayesian approach, the theoretical analysis establishes posterior contraction rates in the infinite data limit with Gaussian priors that are not directly linked to the forward map of the inverse problem. The main results also include learning-theoretic generalization error guarantees for a wide range of distribution shifts. These convergence rates quantify the effects of data smoothness and true eigenvalue decay or growth, for compact or unbounded operators, respectively, on sample complexity. Numerical evidence supports the theory in diagonal and non-diagonal settings.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here