Coordinates-based Resource Allocation Through Supervised Machine Learning

13 May 2020  ·  Sahar Imtiaz, Sebastian Schiessl, Georgios P. Koudouridis, James Gross ·

Appropriate allocation of system resources is essential for meeting the increased user-traffic demands in the next generation wireless technologies. Traditionally, the system relies on channel state information (CSI) of the users for optimizing the resource allocation, which becomes costly for fast-varying channel conditions. Considering that future wireless technologies will be based on dense network deployment, where the mobile terminals are in line-of-sight of the transmitters, the position information of terminals provides an alternative to estimate the channel condition. In this work, we propose a coordinates-based resource allocation scheme using supervised machine learning techniques, and investigate how efficiently this scheme performs in comparison to the traditional approach under various propagation conditions. We consider a simplistic system set up as a first step, where a single transmitter serves a single mobile user. The performance results show that the coordinates-based resource allocation scheme achieves a performance very close to the CSI-based scheme, even when the available coordinates of terminals are erroneous. The proposed scheme performs consistently well with realistic-system simulation, requiring only 4 s of training time, and the appropriate resource allocation is predicted in less than 90 microseconds with a learnt model of size less than 1 kB.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here