CorruptEncoder: Data Poisoning based Backdoor Attacks to Contrastive Learning

15 Nov 2022  ·  Jinghuai Zhang, Hongbin Liu, Jinyuan Jia, Neil Zhenqiang Gong ·

Contrastive learning (CL) pre-trains general-purpose encoders using an unlabeled pre-training dataset, which consists of images or image-text pairs. CL is vulnerable to data poisoning based backdoor attacks (DPBAs), in which an attacker injects poisoned inputs into the pre-training dataset so the encoder is backdoored. However, existing DPBAs achieve limited effectiveness. In this work, we take the first step to analyze the limitations of existing backdoor attacks and propose new DPBAs called CorruptEncoder to CL. CorruptEncoder introduces a new attack strategy to create poisoned inputs and uses a theory-guided method to maximize attack effectiveness. Our experiments show that CorruptEncoder substantially outperforms existing DPBAs. In particular, CorruptEncoder is the first DPBA that achieves more than 90% attack success rates with only a few (3) reference images and a small poisoning ratio 0.5%. Moreover, we also propose a defense, called localized cropping, to defend against DPBAs. Our results show that our defense can reduce the effectiveness of DPBAs, but it sacrifices the utility of the encoder, highlighting the need for new defenses.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here