Cost-Efficient Deployment of a Reliable Multi-UAV Unmanned Aerial System

30 Aug 2022  ·  Nithin Babu, Petar Popovski, Constantinos B. Papadias ·

In this work, we study the trade-off between the reliability and the investment cost of an unmanned aerial system (UAS) consisting of a set of unmanned aerial vehicles (UAVs) carrying radio access nodes, called portable access points (PAPs)), deployed to serve a set of ground nodes (GNs). Using the proposed algorithm, a given geographical region is equivalently represented as a set of circular regions, where each circle represents the coverage region of a PAP. Then, the steady-state availability of the UAS is analytically derived by modelling it as a continuous time birth-death Markov decision process (MDP). Numerical evaluations show that the investment cost to guarantee a given steady-state availability to a set of GNs can be reduced by considering the traffic demand and distribution of GNs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods