Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits

2 Jan 2020  ·  M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, Patrick J. Coles ·

Variational quantum algorithms (VQAs) optimize the parameters $\vec{\theta}$ of a parametrized quantum circuit $V(\vec{\theta})$ to minimize a cost function $C$. While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove two results, assuming $V(\vec{\theta})$ is an alternating layered ansatz composed of blocks forming local 2-designs. Our first result states that defining $C$ in terms of global observables leads to exponentially vanishing gradients (i.e., barren plateaus) even when $V(\vec{\theta})$ is shallow. Hence, several VQAs in the literature must revise their proposed costs. On the other hand, our second result states that defining $C$ with local observables leads to at worst a polynomially vanishing gradient, so long as the depth of $V(\vec{\theta})$ is $\mathcal{O}(\log n)$. Our results establish a connection between locality and trainability. We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum autoencoder implementation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here