Covariate Balancing Methods for Randomized Controlled Trials Are Not Adversarially Robust

25 Oct 2021  ·  Hossein Babaei, Sina AlEMohammad, Richard Baraniuk ·

The first step towards investigating the effectiveness of a treatment via a randomized trial is to split the population into control and treatment groups then compare the average response of the treatment group receiving the treatment to the control group receiving the placebo. In order to ensure that the difference between the two groups is caused only by the treatment, it is crucial that the control and the treatment groups have similar statistics. Indeed, the validity and reliability of a trial are determined by the similarity of two groups' statistics. Covariate balancing methods increase the similarity between the distributions of the two groups' covariates. However, often in practice, there are not enough samples to accurately estimate the groups' covariate distributions. In this paper, we empirically show that covariate balancing with the Standardized Means Difference (SMD) covariate balancing measure, as well as Pocock's sequential treatment assignment method, are susceptible to worst-case treatment assignments. Worst-case treatment assignments are those admitted by the covariate balance measure, but result in highest possible ATE estimation errors. We developed an adversarial attack to find adversarial treatment assignment for any given trial. Then, we provide an index to measure how close the given trial is to the worst-case. To this end, we provide an optimization-based algorithm, namely Adversarial Treatment ASsignment in TREatment Effect Trials (ATASTREET), to find the adversarial treatment assignments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here