Cramer-Rao Bound Optimization for Active RIS-Empowered ISAC Systems

17 Sep 2023  ·  Qi Zhu, Ming Li, Rang Liu, Qian Liu ·

Integrated sensing and communication (ISAC), which simultaneously performs sensing and communication functions within a shared frequency band and hardware platform, has emerged as a promising technology for future wireless systems. Nevertheless, the weak echo signal received by the low-sensitivity ISAC receiver significantly constrains sensing performance in scenarios involving obstructed targets. Active reconfigurable intelligent surface (RIS) has become a prospective solution by situationally manipulating the wireless propagations and amplifying the signals. In this paper, we investigate active RIS-empowered ISAC systems to enhance radar echo signal quality as well as communication performance. In particular, we focus on the joint design of the base station (BS) transmit precoding and the active RIS reflection beamforming to optimize the parameter estimation performance in terms of Cramer-Rao bound (CRB) subject to the communication users' signal-to-interference-plus-noise ratio (SINR) requirements. An efficient algorithm based on alternating optimization, semidefinite relaxation (SDR), and majorization-minimization (MM) is proposed to solve the formulated challenging non-convex problem. Finally, simulation results validate the effectiveness of the developed algorithm and the potential of employing active RIS in ISAC systems to enhance direct-of-arrival (DoA) estimation performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods