CRISP: Curriculum inducing Primitive Informed Subgoal Prediction

7 Apr 2023  ·  Utsav Singh, Vinay P. Namboodiri ·

Hierarchical reinforcement learning (HRL) is a promising approach that uses temporal abstraction to solve complex long horizon problems. However, simultaneously learning a hierarchy of policies is unstable as it is challenging to train higher-level policy when the lower-level primitive is non-stationary. In this paper, we present CRISP, a novel HRL algorithm that effectively generates a curriculum of achievable subgoals for evolving lower-level primitives using reinforcement learning and imitation learning. CRISP uses the lower level primitive to periodically perform data relabeling on a handful of expert demonstrations, using a novel primitive informed parsing (PIP) approach, thereby mitigating non-stationarity. Since our approach only assumes access to a handful of expert demonstrations, it is suitable for most robotic control tasks. Experimental evaluations on complex robotic maze navigation and robotic manipulation tasks demonstrate that inducing hierarchical curriculum learning significantly improves sample efficiency, and results in efficient goal conditioned policies for solving temporally extended tasks. Additionally, we perform real world robotic experiments on complex manipulation tasks and demonstrate that CRISP demonstrates impressive generalization in real world scenarios.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here