Cross-Modal Deep Variational Hashing

In this paper, we propose a cross-modal deep variational hashing (CMDVH) method to learn compact binary codes for cross-modality multimedia retrieval. Unlike most existing cross-modal hashing methods which learn a single pair of projections to map each example into a binary vector, we design a deep fusion neural network to learn non-linear transformations from image-text input pairs, such that a unified binary code is achieved in a discrete and discriminative manner using a classification-based hinge-loss criterion. We then design modality-specific neural networks in a probabilistic manner such that we model a latent variable to be close as possible from the inferred binary codes, at the same time approximated by a posterior distribution regularized by a known prior, which is suitable for out-of-sample extension. Experimental results on three benchmark datasets show the efficacy of the proposed approach.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here