Cross view link prediction by learning noise-resilient representation consensus

Link Prediction has been an important task for social and information networks. Existing approaches usually assume the completeness of network structure. However, in many real-world networks, the links and node attributes can usually be partially observable. In this paper, we study the problem of Cross View Link Prediction (CVLP) on partially observable networks, where the focus is to recommend nodes with only links to nodes with only attributes (or vice versa). We aim to bridge the information gap by learning a robust consensus for link-based and attribute-based representations so that nodes become comparable in the latent space. Also, the link-based and attribute-based representations can lend strength to each other via this consensus learning. Moreover, attribute selection is performed jointly with the representation learning to alleviate the effect of noisy high-dimensional attributes. We present two instantiations of this framework with different loss functions and develop an alternating optimization framework to solve the problem. Experimental results on four real-world datasets show the proposed algorithm outperforms the baseline methods significantly for crossview link prediction.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here