Crowd Counting with Sparse Annotation

This paper presents a new annotation method called Sparse Annotation (SA) for crowd counting, which reduces human labeling efforts by sparsely labeling individuals in an image. We argue that sparse labeling can reduce the redundancy of full annotation and capture more diverse information from distant individuals that is not fully captured by Partial Annotation methods. Besides, we propose a point-based Progressive Point Matching network (PPM) to better explore the crowd from the whole image with sparse annotation, which includes a Proposal Matching Network (PMN) and a Performance Restoration Network (PRN). The PMN generates pseudo-point samples using a basic point classifier, while the PRN refines the point classifier with the pseudo points to maximize performance. Our experimental results show that PPM outperforms previous semi-supervised crowd counting methods with the same amount of annotation by a large margin and achieves competitive performance with state-of-the-art fully-supervised methods.

Results in Papers With Code
(↓ scroll down to see all results)