Curriculum Loss: Robust Learning and Generalization against Label Corruption

ICLR 2020  ·  Yueming Lyu, Ivor W. Tsang ·

Deep neural networks (DNNs) have great expressive power, which can even memorize samples with wrong labels. It is vitally important to reiterate robustness and generalization in DNNs against label corruption. To this end, this paper studies the 0-1 loss, which has a monotonic relationship with an empirical adversary (reweighted) risk~\citep{hu2016does}. Although the 0-1 loss has some robust properties, it is difficult to optimize. To efficiently optimize the 0-1 loss while keeping its robust properties, we propose a very simple and efficient loss, i.e. curriculum loss (CL). Our CL is a tighter upper bound of the 0-1 loss compared with conventional summation based surrogate losses. Moreover, CL can adaptively select samples for model training. As a result, our loss can be deemed as a novel perspective of curriculum sample selection strategy, which bridges a connection between curriculum learning and robust learning. Experimental results on benchmark datasets validate the robustness of the proposed loss.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here