Curvature-aided Incremental Aggregated Gradient Method

24 Oct 2017Hoi-To WaiWei ShiAngelia NedicAnna Scaglione

We propose a new algorithm for finite sum optimization which we call the curvature-aided incremental aggregated gradient (CIAG) method. Motivated by the problem of training a classifier for a d-dimensional problem, where the number of training data is $m$ and $m \gg d \gg 1$, the CIAG method seeks to accelerate incremental aggregated gradient (IAG) methods using aids from the curvature (or Hessian) information, while avoiding the evaluation of matrix inverses required by the incremental Newton (IN) method... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet