Cut-set and Stability Constrained Optimal Power Flow for Resilient Operation During Wildfires

9 Nov 2023  ·  Satyaprajna Sahoo, Anamitra Pal ·

Resilient operation of the power system during ongoing wildfires is challenging because of the uncertain ways in which the fires impact the electric power infrastructure (multiple arc-faults, complete melt-down). To address this challenge, we propose a novel cut-set and stability-constrained optimal power flow (OPF) that quickly mitigates both static and dynamic insecurities as wildfires progress through a region. First, a Feasibility Test (FT) algorithm that quickly desaturates overloaded cut-sets to prevent cascading line outages is integrated with the OPF problem. Then, the resulting formulation is combined with a data-driven transient stability analyzer that predicts the correction factors for eliminating dynamic insecurities. The proposed model considers the possibility of generation rescheduling as well as load shed. The results obtained using the IEEE 118-bus system indicate that the proposed approach alleviates vulnerability of the system to wildfires while minimizing operational cost.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here