Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling

We present a new method for evaluating and training unnormalized density models. Our approach only requires access to the gradient of the unnormalized model's log-density. We estimate the Stein discrepancy between the data density $p(x)$ and the model density $q(x)$ defined by a vector function of the data. We parameterize this function with a neural network and fit its parameters to maximize the discrepancy. This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data. Furthermore, optimizing $q(x)$ to minimize this discrepancy produces a novel method for training unnormalized models which scales more gracefully than existing methods. The ability to both learn and compare models is a unique feature of the proposed method.

PDF Abstract ICML 2020 PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods