Cycle-Balanced Representation Learning For Counterfactual Inference

29 Oct 2021  ·  Guanglin Zhou, Lina Yao, Xiwei Xu, Chen Wang, Liming Zhu ·

With the widespread accumulation of observational data, researchers obtain a new direction to learn counterfactual effects in many domains (e.g., health care and computational advertising) without Randomized Controlled Trials(RCTs). However, observational data suffer from inherent missing counterfactual outcomes, and distribution discrepancy between treatment and control groups due to behaviour preference. Motivated by recent advances of representation learning in the field of domain adaptation, we propose a novel framework based on Cycle-Balanced REpresentation learning for counterfactual inference (CBRE), to solve above problems. Specifically, we realize a robust balanced representation for different groups using adversarial training, and meanwhile construct an information loop, such that preserve original data properties cyclically, which reduces information loss when transforming data into latent representation space.Experimental results on three real-world datasets demonstrate that CBRE matches/outperforms the state-of-the-art methods, and it has a great potential to be applied to counterfactual inference.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here