D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options

21 Aug 2023  ·  Kristoffer Andersson, Cornelis W. Oosterlee ·

In this paper, we propose a machine learning algorithm for time-inconsistent portfolio optimization. The proposed algorithm builds upon neural network based trading schemes, in which the asset allocation at each time point is determined by a a neural network. The loss function is given by an empirical version of the objective function of the portfolio optimization problem. Moreover, various trading constraints are naturally fulfilled by choosing appropriate activation functions in the output layers of the neural networks. Besides this, our main contribution is to add options to the portfolio of risky assets and a risk-free bond and using additional neural networks to determine the amount allocated into the options as well as their strike prices. We consider objective functions more in line with the rational preference of an investor than the classical mean-variance, apply realistic trading constraints and model the assets with a correlated jump-diffusion SDE. With an incomplete market and a more involved objective function, we show that it is beneficial to add options to the portfolio. Moreover, it is shown that adding options leads to a more constant stock allocation with less demand for drastic re-allocations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here