Data Topology-Dependent Upper Bounds of Neural Network Widths

25 May 2023  ·  Sangmin Lee, Jong Chul Ye ·

This paper investigates the relationship between the universal approximation property of deep neural networks and topological characteristics of datasets. Our primary contribution is to introduce data topology-dependent upper bounds on the network width. Specifically, we first show that a three-layer neural network, applying a ReLU activation function and max pooling, can be designed to approximate an indicator function over a compact set, one that is encompassed by a tight convex polytope. This is then extended to a simplicial complex, deriving width upper bounds based on its topological structure. Further, we calculate upper bounds in relation to the Betti numbers of select topological spaces. Finally, we prove the universal approximation property of three-layer ReLU networks using our topological approach. We also verify that gradient descent converges to the network structure proposed in our study.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods