DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement

Speech enhancement has benefited from the success of deep learning in terms of intelligibility and perceptual quality. Conventional time-frequency (TF) domain methods focus on predicting TF-masks or speech spectrum, via a naive convolution neural network (CNN) or recurrent neural network (RNN). Some recent studies use complex-valued spectrogram as a training target but train in a real-valued network, predicting the magnitude and phase component or real and imaginary part, respectively. Particularly, convolution recurrent network (CRN) integrates a convolutional encoder-decoder (CED) structure and long short-term memory (LSTM), which has been proven to be helpful for complex targets. In order to train the complex target more effectively, in this paper, we design a new network structure simulating the complex-valued operation, called Deep Complex Convolution Recurrent Network (DCCRN), where both CNN and RNN structures can handle complex-valued operation. The proposed DCCRN models are very competitive over other previous networks, either on objective or subjective metric. With only 3.7M parameters, our DCCRN models submitted to the Interspeech 2020 Deep Noise Suppression (DNS) challenge ranked first for the real-time-track and second for the non-real-time track in terms of Mean Opinion Score (MOS).

PDF Abstract Interspeech 2020 PDF Interspeech 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper
Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Speech Enhancement Deep Noise Suppression (DNS) Challenge DCCRN-E-Aug PESQ-NB 3.214 # 3
Speech Enhancement Deep Noise Suppression (DNS) Challenge DCCRN-E PESQ-NB 3.04 # 4

Methods


No methods listed for this paper. Add relevant methods here