Deadwooding: Robust Global Pruning for Deep Neural Networks

10 Feb 2022  ·  Sawinder Kaur, Ferdinando Fioretto, Asif Salekin ·

The ability of Deep Neural Networks to approximate highly complex functions is key to their success. This benefit, however, comes at the expense of a large model size, which challenges its deployment in resource-constrained environments. Pruning is an effective technique used to limit this issue, but often comes at the cost of reduced accuracy and adversarial robustness. This paper addresses these shortcomings and introduces Deadwooding, a novel global pruning technique that exploits a Lagrangian Dual method to encourage model sparsity while retaining accuracy and ensuring robustness. The resulting model is shown to significantly outperform the state-of-the-art studies in measures of robustness and accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods