Decaying momentum helps neural network training

25 Sep 2019  ·  John Chen, Anastasios Kyrillidis ·

Momentum is a simple and popular technique in deep learning for gradient-based optimizers. We propose a decaying momentum (Demon) rule, motivated by decaying the total contribution of a gradient to all future updates. Applying Demon to Adam leads to significantly improved training, notably competitive to momentum SGD with learning rate decay, even in settings in which adaptive methods are typically non-competitive. Similarly, applying Demon to momentum SGD rivals momentum SGD with learning rate decay, and in many cases leads to improved performance. Demon is trivial to implement and incurs limited extra computational overhead, compared to the vanilla counterparts.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here